Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in the TGR(mRen2)27 rat.
نویسندگان
چکیده
The aim of this investigation was to evaluate sex differences in baroreflex and heart rate variability (HRV) dysfunction and indexes of end-organ damage in the TG(mRen2)27 (Ren2) rat, a model of renin overexpression and tissue renin-angiotensin-aldosterone system overactivation. Blood pressure (via telemetric monitoring), blood pressure variability [BPV; SD of systolic blood pressure (SBP)], spontaneous baroreflex sensitivity, HRV [HRV Triangular Index (HRV-TI), standard deviation of the average NN interval (SDNN), low and high frequency power (LF and HF, respectively), and Poincaré plot analysis (SD1, SD2)], and cardiovascular function (pressure-volume loop analysis and proteinuria) were evaluated in male and female 10-wk-old Ren2 and Sprague Dawley rats. The severity of hypertension was greater in Ren2 males (R2-M) than in Ren2 females (R2-F). Increased BPV, suppression of baroreflex gain, decreased HRV, and associated end-organ damage manifested as cardiac dysfunction, myocardial remodeling, elevated proteinuria, and tissue oxidative stress were more pronounced in R2-M compared with R2-F. During the dark cycle, HRV-TI and SDNN were negatively correlated with SBP within R2-M and positively correlated within R2-F; within R2-M, these indexes were also negatively correlated with end-organ damage [left ventricular hypertrophy (LVH)]. Furthermore, within R2-M only, LVH was strongly correlated with indexes of HRV representing predominantly vagal (HF, SD1), but not sympathetic (LF, SD2), variability. These data demonstrated relative protection in females from autonomic dysfunction and end-organ damage associated with elevated blood pressure in the Ren2 model of hypertension.
منابع مشابه
Abolition of hypertension-induced end-organ damage by androgen receptor blockade in transgenic rats harboring the mouse ren-2 gene.
A sexual dimorphism in hypertension has been observed in both human and laboratory animal studies. The mechanisms by which male sex hormones regulate cardiovascular homeostasis are still not yet fully understood and represent the subject of this study. The possible involvement of androgen receptors in the development of hypertension and end-organ damage in transgenic rats harboring the mouse Re...
متن کاملAbolition of end-organ damage by antiandrogen treatment in female hypertensive transgenic rats.
We aimed at studying the role of androgens in the development of cardiovascular pathology in hypertensive female rats. Female TGR(mREN2)27 rats harboring the mouse Ren-2 renin gene were treated with Flutamide (specific antagonist of the androgen receptor, 30 mg/kg per day) starting at 4 weeks of age. Flutamide treatment significantly attenuated the development of hypertension in female rats (sy...
متن کاملاثر استروژن و پروژسترون بر حساسیت بارورفلکسها در شرایط حاد فشار خون در موشهای صحرایی
Background: Epidemiological studies suggested that incidence of cardiovascular diseases in menopause women is more than their nonmenopausal period. The cardioprotective role of estrogen may be responsible for some of these effects. In the present study we evaluated the role of female sex hormones on baroreflex sensitivity in acute hypertension state of rat. Materials and Methods: This was an...
متن کاملCentral angiotensin-(1-7) improves vagal function independent of blood pressure in hypertensive (mRen2)27 rats.
Hypertensive transgenic (mRen2)27 rats with overexpression of the mRen2 gene have impaired baroreflex sensitivity for heart rate control and high nicotinamide adenine dinucleotide phosphate oxidase and kinase-to-phosphatase signaling activity in medullary tissue compared with normotensive Hannover Sprague-Dawley control rats. They also exhibit insulin resistance at a young age. To determine whe...
متن کاملLoss of 24 h rhythm and light-induced c-fos mRNA expression in the suprachiasmatic nucleus of the transgenic hypertensive TGR(mRen2)27 rat and effects on cardiovascular rhythms.
Immediate early genes, especially c-fos, are thought to play an essential role in photic entrainment of circadian rhythms. A special characteristic of the transgenic hypertensive TGR(mRen2)27 rat strain, expressing an additional mouse renin2 gene, is the inverse blood pressure rhythm in relation to those in heart rate and activity resulting in internal desynchronisation of these physiological r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 301 4 شماره
صفحات -
تاریخ انتشار 2011